
Patterns of  
Software Architecture

Software Engineering
Alessio Gambi - Saarland University

Based on the work of Cesare Pautasso, Christoph Dorn, and their students

Software Architecture

A software system’s architecture is the
set of principal design decisions made

about the system. N. Taylor et al.

Abstraction
Communication

Visualization and Representation
Quality Attributes

Every system has
a software architecture

What designers want

Modeling
• System-to-be

Boundary/Internal Model

Quality attributes

Development

• Problem
Domain model

• Environment
System Context

Stakeholders

• Components
Computation

State

• Connectors
Interaction

C. C. C. F.

• Views & Viewpoints
Kruchten 4+1

Design

• Architectural Styles

• Architectural Patterns

• Building Blocks
- Software Connectors

Architectural Styles

Named collections of architectural decisions that are
applicable in a development context.

They constrain architectural design decisions,  
are specific to the system within that context, and
elicit beneficial qualities in each resulting system

Monolithic
• Lack of structure

• No Constraints

• Poor Maintainability

• Possibly Good Performance

Mainframe COBOL programs ∙ powerpoint ∙ many games

Layered
• Communications 1 layer up/down

• Information hiding, no circular deps

• Possibly bad performance

• Good evolvability

Network protocol stacks ∙ Web applications ∙ Virtual Machines

Component Based
• Encapsulation

• Information hiding

• Components compatibility problem

• Good reuse, independent development

CORBA ∙ Enterprise JavaBean ∙ OSGi

Service Oriented
• Components might be outside control

• Standard connectors, precise interfaces

• Interface compatibility problem

• Loose coupling, reuse

Web Services (WS-*) ∙ Cloud Computing

Plugin
• Explicit extension points

• Static/Dynamic composition

• Low security (3rd party code)

• Extensibility and customizability

Eclipse ∙ Photoshop ∙ Browsers’ extensions

Pipe & Filter
• Clean separation: filter process, pipe

transport

• Heterogeneity and distribution

• Only batch processing, serializable data

• Composability, Reuse

UNIX shell ∙ Compiler ∙ Graphics Rendering

Black Board
• Collective problem solving via shared data

• Asynchronous components interactions

• Requires common data format

• Loose coupling, implicit data flow

Database ∙ Tuple space ∙ Expert systems (AI)

Event Driven
• Produce/React to events

• Asynchronous signals/messages

• Difficult guarantee performance

• Loose coupling, scalable

Sensor Monitoring ∙ Complex Event Processing

Publish/Subscribe
• Event driven + opposite roles

• Subscription to queues or topics

• Limited scalability

• Loose coupling

Twitter ∙ RSS Feeds ∙ Email

Client/Server
• Many clients, active, close to users

• One server, passive, close to data

• Single point of failure, scalability

• Security, scalability

Web Browser/server ∙ Databases ∙ File Servers ∙ Git/SVN

Peer to Peer
• Both server and client at the same time

• Dynamic join/leave

• Difficult administration, data recovery

• Scalability, dependability/robustness

File Sharing ∙ Skype (mixed style) ∙ Distributed Hash Tables

Data Centric
• Persistence layer

• Black board like

• Single point of failure

• (Eventual) Consistency (BASE/ACID)

Relational DB ∙ Key-Value Stores

Rule Based
• Rules dynamically triggered

• Layered

• Possibly hard to understand and maintain

• Evolvability

Business Rule Engines ∙ Expert Systems ∙ Prolog

Mobile Code
• Code migrates (weak)

• Code+execution state migrate (strong)

• Security

• Fault tolerance, performance

JavaScript ∙ Flash ∙ Java Applets ∙ Mobile Agents ∙ Viruses

REST
• Hybrid style

• Stateless interactions/Stateful
resources

• Loose coupling, scalability,
interoperability

World Wide Web ∙ RESTFul Web APIs

An architectural pattern is a set of architectural
design decisions that are applicable to a recurring
design problem, and parameterized to account for

different software development contexts in which that
problem appears.

Architectural Patterns

Layered - Component - Events - Composition

Layered Patterns
• State-Logic-Display

separate elements with different rate of change

• Model-View-Controller
support many interaction and display modes for the same
content

• Presenter-View
keep a consistent look and feel across a complex UI

State-Logic-Display

cluster elements that change at the same rate

Model-View-Controller
separate content (model) from presentation (output) and

interaction (input)

Presenter-View

extract the content from the model to be presented
from the rendering into screens/web pages

Component Patterns
• Interoperability

enable communication between different platforms

• Directory
facilitate location transparency (direct control)

• Dependency Injection
facilitate location transparency (inversion of control)

Interoperability
map to a standardized intermediate representation and

communication style

Directory
use a directory service to find service endpoints based on

abstract descriptions

Dependency Injection
use a container which updates components with

bindings to their dependencies

Notification Patterns
• Event Monitor

inform clients about events happening at the service

• Observer
promptly inform clients about state changes of a service

• Publish/Subscribe
decouple clients from services generating events

• Messaging Bridge
connect multiple messaging systems

• Half Synch/Half Async
interconnect synchronous and asynchronous components

Event Monitor
poll and compare state snapshots

Observer
detect changes and generate events at the service

Publish/Subscribe
factor out event propagation and subscription management

into a separate service

Messaging Bridge
link multiple messaging systems to make messages

exchanged on one also available on the others

Half-Sync/Half-Async
Add a layer hiding asynchronous interactions behind a

synchronous interface

Composition Patterns
• Scatter/Gather

send the same message to multiple recipients which will/may reply

• Canary Call
avoid crashing all recipients of a poisoned request

• Master/Slave
speed up the execution of long running computations

• Load Balancing
speed up and scale up the execution of requests of many clients

• Orchestration
improve the reuse of existing applications

Scatter/Gather
combine the notification of the request with

aggregation of replies

Canary Call
use an heuristic to evaluate the request

Master/Slave
split a large job into smaller independent

partitions which can be processed in parallel

Load Balancing
deploy many replicated instances of the server

on multiple machines

Composition/Orchestration
build systems out of the composition of existing ones

Software Connectors

Software connectors are first-class entities, have
identity, and describe all system interactions.
Software connectors are application independent
and orthogonal to software components.

generic building blocks

Remote Procedure Call

• Call

Often used within the client/server architectural style
and event-oriented systems as call-backs

Stream

• Send

• Receive

Fits the pipe & filter architectural style

Shared Database

• Create

• Read

• Update

• Delete

Disruptor

• Next

• Publish

• WaitFor

• Get

Message Bus

• Publish

• Subscribe

• Notify

Fits the Service Oriented style

File Transfer

• Write

• Copy

• Watch

• Read

• Load

• Unload

• Call

• Read/Write

Linkage

Tuple Space

Fits the Blackboard style and the Master/Worker pattern

• In

• Out

• Rd

• Get

• Put

• Post

• Delete

Web

Fits the REST architectural style

Case Study

MediaWiki
• General purpose PHP-based system for Wikis

• The core of WikiMedia project (Wikipedia)

• Long-living project (~14 years)

• In September 2014 all Wikimedia projects served
~23.2 billions of pages

Main Scenarios

• A user requests an article during normal operation
and gets the rendered article HTML page.  

• An editor saves an edited article during normal
operation and the article is saved.

Web Browser

Front End App Server Back End

Performance Tactics
• Control Resource Demand

- Increase the resource efficiency (caching)
- Prioritize events (deferred article updates)
- Reduce overhead (precompile PHP and HTML)

• Manage Resources
- Introduce concurrency (Distributed database)
- Schedule resources (Load balancer)
- Multiple copies of data and computations

Caching + Load Balancing

FrontEnd
(Apache)

Caching + Load Balancing

Squid
(Caching) Apache

Caching + Load Balancing

Squid ApacheLoadBalancer
(Squid) LoadBalancer

Caching + Load Balancing

Squid ApacheLoadBalancer
(Squid) LoadBalancer

Squid ApacheLoadBalancer LoadBalancer

Squid

Squid

Apache

Apache

Distribution + Replication

Database

Distribution + Replication

DB Slave

Load Balancer

ReadsWrites

DB Master

Distribution + Replication

DB Slave

Load Balancer
(Master)

ReadsWrites

DB Master
(Shard)

Partition Logic
(Sharding,
Relication

Backend

ParserArticleEdit

ReadsWrites

ArticleViewSubmit Logic

UI Page

Skinning Localization

Static
Resources

Backend

ParserArticleEdit

ReadsWrites

ArticleViewSubmit Logic

UI Page

Skinning Localization

Static
Resources

Loader

Cache Cache

Cache
Cache

Backend

Parser

ArticleEdit

Reads

Writes

ArticleView

Submit Logic

UI Page

Skinning Localization

Parser
Cache

Static
Resources

Loader

CachedCached

Cached

Job Runner

Writes

Job Queue

HTML File
Cache

Precompile/Recompile

Regenerate/Invalidate

Security/Availability Tactics
• Prevent Attacks

• Challenge Tokens (CSRF)
• Validation (User) and Sanitization (SQL Injection, XSS)

• Resist Attacks
• Maintain multiple copies of computations.
• Maintain multiple copies of data

• Recover from Attacks
• DB Versioning (Recovery from data loss)

Backend

ParserArticleEdit

ReadsWrites

ArticleViewSubmit Logic

UI Page

Skinning Localization

Static
Resources

Loader

Cache Cache

Cache
Cache

Backend

Parser
ArticleEdit

Reads
Writes

ArticleView

Submit Logic

UI Page

Skinning Localization

Static
Resources

Loader

Cache Cache

Cache
Cache

Sanitizer
Pipeline

User Access

Extensibility

Backend

Parser
ArticleEdit

Reads
Writes

ArticleView

Submit Logic

UI Page

Skinning Localization

Static
Resources

Loader

Cache

Cache
Sanitizer

Cache

Cache

Extensibility

Backend

ParserArticleEdit

ReadsWrites

ArticleView

Submit Logic

UI Page

Skinning Localization

Static
Resources

Loader

Cache

CacheSanitizer

Cache

Cache

Hook Engine
Register Callback

Notify

Notify

Notify
Notify

Notify

External
Module

Configurability/Customizability

ParserArticleEdit

ReadsWrites

ArticleView

Submit Logic

UI Page

Skinning Localization

Static
Resources

Loader

Cache

Cache
Sanitizer

Cache

Cache

Global
Variables and
Configurations

ParserArticleEdit

ReadsWrites

ArticleView

Submit Logic

UI Page

Skinning Localization

Static
Resources

Loader

Cache

Cache
Sanitizer

Cache

Cache

Configurability/Customizability

Architectural Styles
“Looking at the source code, it becomes evident that MediaWiki’s
development process did not focus on strictly following textbook

architectural styles and patterns.”

• Layered
- FrontEnd/Network, Application, Backend/Database
- Multi-level caching

• Blackboard
- Global variables

Architectural Patterns
• Presenter view (skinning)

• Publish/Subscribe (hooks)

• Master/Slave (database)

• Load balancer (network,database)

• Event monitor (cache invalidation)

Cheat Sheets

Architectural Styles

Availability Tactics

Detect Faults Prevent Faults

Ping / Echo Removal from
Service

Monitor
Transactions

Predictive
Model

Recover from Faults

Heartbeat

Preparation
and Repair

Reintroduction

Active
Redundancy

Passive
Redundancy

Spare
Escalating
Restart

Exception
Handling

Shadow

Non-Stop
Forwarding

State
Resynchronization

Exception
Prevention

Fault

Fault
Masked
or
Repair
Made

Timestamp

Sanity
Checking

Condition
Monitoring

Voting

Exception
Detection

Self-Test

Rollback

Software
Upgrade

Retry

Ignore Faulty
Behavior

Degradation

Reconfiguration

Increase
Competence Set

Modifiability Tactics

Increase
Cohesion

Reduce
Coupling

Split Module
Encapsulate

Use an
Intermediary

Change
Requests

Changes Made
and Deployed

Reduce Size
of a Module

Increase
Semantic
Coherence

Restrict
Dependencies

Refactor

Abstract Common
Services

Defer
Binding

Testability Tactics

Control and Observe
System State

Limit Complexity

Specialized
Interfaces

Limit Structural
Complexity

Limit
Non-determinism

Tests
Executed

Faults
Detected

Record/
Playback

Localize State
Storage

Sandbox

Executable
Assertions

Abstract Data
Sources

Usability Tactics

Support User
Initiative

Support System
Initiative

Cancel

Maintain User
Model

Maintain System
Model

User
Request

User Given
Appropriate
Feedback and
Assistance

Undo

Pause/Resume

Aggregate

Maintain Task
Model

